48 research outputs found

    Multi-Information Source Fusion and Optimization to Realize ICME: Application to Dual Phase Materials

    Get PDF
    Integrated Computational Materials Engineering (ICME) calls for the integration of computational tools into the materials and parts development cycle, while the Materials Genome Initiative (MGI) calls for the acceleration of the materials development cycle through the combination of experiments, simulation, and data. As they stand, both ICME and MGI do not prescribe how to achieve the necessary tool integration or how to efficiently exploit the computational tools, in combination with experiments, to accelerate the development of new materials and materials systems. This paper addresses the first issue by putting forward a framework for the fusion of information that exploits correlations among sources/models and between the sources and `ground truth'. The second issue is addressed through a multi-information source optimization framework that identifies, given current knowledge, the next best information source to query and where in the input space to query it via a novel value-gradient policy. The querying decision takes into account the ability to learn correlations between information sources, the resource cost of querying an information source, and what a query is expected to provide in terms of improvement over the current state. The framework is demonstrated on the optimization of a dual-phase steel to maximize its strength-normalized strain hardening rate. The ground truth is represented by a microstructure-based finite element model while three low fidelity information sources---i.e. reduced order models---based on different homogenization assumptions---isostrain, isostress and isowork---are used to efficiently and optimally query the materials design space.Comment: 19 pages, 11 figures, 5 table

    Exploration of the High Entropy Alloy Space as a Constraint Satisfaction Problem

    Get PDF
    High Entropy Alloys (HEAs), Multi-principal Component Alloys (MCA), or Compositionally Complex Alloys (CCAs) are alloys that contain multiple principal alloying elements. While many HEAs have been shown to have unique properties, their discovery has been largely done through costly and time-consuming trial-and-error approaches, with only an infinitesimally small fraction of the entire possible composition space having been explored. In this work, the exploration of the HEA composition space is framed as a Continuous Constraint Satisfaction Problem (CCSP) and solved using a novel Constraint Satisfaction Algorithm (CSA) for the rapid and robust exploration of alloy thermodynamic spaces. The algorithm is used to discover regions in the HEA Composition-Temperature space that satisfy desired phase constitution requirements. The algorithm is demonstrated against a new (TCHEA1) CALPHAD HEA thermodynamic database. The database is first validated by comparing phase stability predictions against experiments and then the CSA is deployed and tested against design tasks consisting of identifying not only single phase solid solution regions in ternary, quaternary and quinary composition spaces but also the identification of regions that are likely to yield precipitation-strengthened HEAs.Comment: 14 pages, 13 figure
    corecore